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Abstract 

Response surface designs under restricted randomization or Split-plot response surface 

designs are often used in agriculture experiments and in industrial experiments due to 

existence of one or more factors that can’t change their levels easily some factors need to 

estimate more precisely. The motive of this paper is to prevail prediction capability of a 

particular class of split-plot response surface designs, known as Central Composite Designs 

by Vining, Kowalski and Montgomery (VKM CCDs) when one observation of any 

category is missed. Both numerical and graphical methods, based on scaled prediction 

variance (SPV) are applied. Robustness of above class of designs against one missing 

observation is investigated relative to G-efficiency and Minimax loss designs are proposed. 

The prediction capability is computed by graphical methods such as 3D Variance 

Dispersion Graph (3D-VDG), Fraction of Design Space (FDS) plots and contour plots for 

extraordinary efficiency standards are used to look at the impact of lacking observations.  

Keywords: Prediction Capability, G-efficiency, Scaled Prediction Variance, Fraction of 

Design space and Variance Dispersion Graph.  

1. Introduction 

Response Surface Methodology (RSM) is a type of experimental setup that may be used to 

create, improve, and optimize processes (Myers et al., 2009). VKM central composite 

designs (VKM CCD) are most commonly used second order split-plot response surface 

designs.  Selection of a good experimental design and the corresponding model have been 

important tasks in any experimental setup. Particularly the selected design should be 

capable to predict the response. This prediction capability can be studied numerically as 
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well as graphically. One of the criteria to compare experimental designs is G-optimality 

which states that a design is G-optimal if it minimizes the maximum scaled prediction 

variance (SPV) and graphical tools to study SPV includes Variance Dispersion Graph 

(VGD 2D & 3D), Fraction of Design space (FDS) and contour plots. The study of 

prediction capability becomes bit complicated when one or more observations are missed 

or excluded from analysis. The property of prediction capability is particularly desired in 

planned experiments of business and industry where future prediction is of intense 

importance. This paper possibly covers prediction capability of VKM CCD when an 

observation is missed. Prediction capability of this class of designs is invstigated using 

SPV and some well known graphical measures variance dispersion graphs, FDS plots and 

contour plots. The mathematical expressions of information matrix and other charactristics 

are simplified for VKM CCD. These expressions were presented by Wesley (2006). Finally 

VKM CCD robust to single missing observation are also recommended on the basis of G-

efficiency. Some motivational examples are referred in next section to highlight the 

significance of this class of designs.  

1.1 Motivational application of Spilt-plot Designs 

Bingham et al. (2004). An experiment was once conducted in a cheese shop. The purpose 

of testing used to be to learn about some of the finer qualities of cheese making. The method 

of making cheese consists of two stages. In the first stage, the milk is turned into a batch 

of curds, and in the second stage, the curds are turned into cheese. Experts become aware 

of nine distinct elements that have an effect on quality. The qualities of cheese 

manufacturing below study. Two of these factors, say Z1 and Z2, are regarded as 

merchandise in the first phase, while the last factors, such as X1, X2, X3, X4, X5, X6, and 

X7 will produce on second step. It is endorsed to habits the test in two phases. First, massive 

portions of milk are processed in boilers at unique temperatures W1 and W2 coefficient 

settings. Processed milk from character boilers is then divide into batches of curd and 

manner these batches. Process into cheese at one-of-a-kind settings for the ultimate seven 

factors. It is an outstanding example of a split-plot designs W1 & W2 are whole plot factors 

and other seven factors are subplot factors. 

Gilmour et al. (2000) elaborated the coffee freeze-drying experience. The cause of the test 

is to study effect of 5 elements on the crop reservation of risky compounds sharing costs. 

These 5 elements are: strain (Z1), solids content material (X1), Slab thickness (X2), 

temperature (X3) and solidification fee (X4) everything is take a look at on three distinctive 

levels. As we all know, the method will be varying a lot between scan runs, however there 

will be extra every day. The variety available sources enable up to 30 experiments run the 

scan and figure out to run it on 6 days, run 5 instances a day. However, it is no longer viable 

to run all 30 running absolutely randomized experiments with all tiers of elements within 

the time allowed due to the fact the stress thing (Z1) have to be changed. Manually, it takes 

a lengthy time to go from one stage to another. In different words, stress is an element for 
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HTC the experimenter wants Stressor ranges all through the day, then run randomly. Five 

exceptional degree settings for the ETC factor. A split-plot graph in which HTC thing 

stages are utilized to the wide variety of days (large experimental units) and the ETC 

element tiers are utilized to the collection (small experimental units) every day. The 

everyday entire pressure is whole plot factor while the closing four elements are subplot 

factors.  

Jones and Goos (2007) stated an examination on polypropylene. The test used to be carried 

out by way of four Belgian organizations to learn about countless elements affecting the 

adhesive houses of polypropylene. The trouble studied is the gasoline plasma cure utilized 

to polypropylene surfaces so that glues and coatings can adhere well. Experimenters are 

generally involved in a low in cost plasma remedy that can impart correct adhesive 

residences to polypropylene. A basic instance of split-plot format is an irrigation 

experiment, the place irrigation degrees are utilized to a massive area, whilst elements such 

as range and fertilizer are assigned to smaller areas in a treatment distinct irrigation 

2. Literature Review 

Split-plot designs (SPD) had been at the start delivered for agricultural experiments and 

have when you consider that grow to be famous for industry-related experiments. These 

designs have obtained adequate interest in the literature in current years. Letsinger et al. 

(1996) furnished RSMs for estimating SP designs and counseled generalized least squares 

for estimating SPRS models. Bingham and Sitter (1999) and Bingham et al. (2004) 

supplied a structural layout of 2k-p SP the use of aberration criteria. Trinca and Gilmour 

(2001) proposed a multi-layered sketch primarily based on sequential methods. Vining et 

al. (2005) furnished the SP central composite layout (VKM CCD) and the SP Box-Behnken 

format (VKM BBD) with the extended central composite sketch and the thoroughly 

random structured Box-Behnken design. These plans are generalized varieties of split-plot 

plans. Kulahci and Bisgaard (2005) give an explanation for how to create SP designs from 

Plackett-Burman designs. Yang et al. (2007) gave a number of outcomes for establishing 

fractional factorial SP designs with low minimal aberrations. 

Goos and Vandebroek (2001, 2003 and 2004) and Jones and Goos (2007) proposed to 

assemble SP D-optimal plans the use of the swap algorithm. See Jones and Nachtsheim 

(2009) for an overview of current traits in SP experimental design. For estimation of 

second-order SP response floor mannequin parameters, we describe designs for which the 

OLS and GLS estimators of some mannequin parameters are equivalent, and regard these 

designs as equal estimating SP designs and generic necessities for this property. They 

additionally provide catalogs for VKM CDD and VKM BBD primarily based on designs 

by using Center Composites and Box-Behnken designs. Parker et al. (2006, 2007a, 2007b) 

proposed two strategies to assemble SP designs the usage of balanced equivalence 

estimates and prolonged these strategies to assemble SP designs with unbalanced 

equivalence estimates. Liang (2005) adopted two graphical tools, 3D VDG and FDS, for 

SPRS design. SP designs have obtained big attention, however the robustness of these 
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designs to lacking observations has now not been noted, without in the article with the aid 

of Chukwu et al. (2013). He researches the loss of special lacking observations related with 

CCD defects. Gandhi and Kumaran (2014) Optimization of biodiesel information research 

the usage of RSM. He makes use of these numbers to find out about and evaluate one-of-

a-kind CCD variants. 

Yakubu et al. (2014) investigated the impact of missing observations on the predictive 

power and accuracy of CCD estimation in a definitely random shape (CRD). Srisuradetchai 

(2015) investigated the robustness of CRD response floor designs to lacking values. He 

additionally added effective metrics and developed R packages. Iwundu (2017) 

investigates the loss of one or two lacking values in response floor designs associated to 

D, A, and efficiency. Alrweill et al. (2019) assembles strong response floor designs that 

are extra sturdy to single observations than present authentic designs. The s trendy has its 

limits. A trouble is that if these runs are inadequate to estimate the parameter of interest, 

they can't be utilized to the last runs. Another quandary is that every criterion focuses on a 

region of interest, such as loss, D yield, estimation power, etc. Therefore, greater bendy 

sturdy statement standards may additionally be wished to stay away from these limitations. 

Oladugba and Ossai (2020) derived from a non-iterative least-squares method to estimate 

a couple of lacking records in rectangular lattice designs (single and triple rectangular 

lattice designs) except repeating the base plan the usage of within-block information. The 

non-iterative least squares approach minimizes the intra-block sum of the squared blunders 

with recognize to the lacking facts and solves the end result to reap an estimate of the 

lacking data. Yankam and Oladugba (2023) constructed an Orthogonal Uniform 

Composite Loss-Max-min (OUCM) design. They compared these designs with the core 

composite design, small composite design, orthogonal array composite design, and 

orthogonal array minimum loss maximum composite design and found that the OUCM 

design performed better in loss and also had better High D, E and T efficiencies. 

3. Research Design 

Methodology consists of Second Order Response Surface (SORS) design approaches and 

their characteristics, losses because of missing observations related to various efficiency 

criteria, and sub-classes of the design to be investigated. Consider a split-plot (SP) design 

with w extensive variety of whole plot elements and k extensive variety of subplot 

elements. Let 𝑵 = ∑ 𝒏𝒊
𝒎
𝒊=𝟏  be the total runs in a design, in which m is to be available 

units for whole plots elements and 𝑛𝑖 the dimensions of ith whole plot. For balanced design 

𝑛𝑖=n then the overall shape of the variety reading the statistics of this test. 

𝒚 = 𝐗𝜷 + 𝜹 + 𝝐       (i) 

Where vector y is of response of order N×1, X is the N×p matrix of coefficients (version 

matrix), β is the p×1 vector of parameters, δ is the random vector of entire plot inaccuracies 
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of order N×1 and ϵ is the random vector of sub-plot errors. The standard shape of the 

version vector is given as. 

𝒇(𝒛, 𝐱)′

= [𝟏|𝐳𝟏,⋯,𝐳𝒘|𝐱𝟏,⋯,𝐱𝒌|𝐳𝟏𝐳𝟐,⋯,𝐳𝒘−𝟏𝐳𝒘|𝐳𝟏𝐱𝟏,⋯,𝐳𝒘𝐱𝒌|𝐱𝟏𝐱𝟐,⋯,𝐱𝒌−𝟏𝐱𝒌|𝒛𝟏,⋯,
𝟐 𝒛𝒘

𝟐 |𝐱𝟏,⋯,
𝟐 𝐱𝒌

𝟐]   (𝐢𝐢) 

Where z and x represent the coefficients of the whole plot and subplot. The model (1) was 

previously assumed 𝜹 + 𝝐 to contain zero mean and variance and covariance matrices. 

                 𝚺 = 𝝈𝝐
𝟐𝑰 + 𝝈𝜹

𝟐𝐉𝐛                                                   (iii) 

Where 𝝈𝝐
𝟐 is the variance due to subplot error and 𝝈𝜹

𝟐 is the variance whole-plot error. For 

balanced design, the 𝑁 × 𝑁 matrix is given as 𝐉𝐛 = 𝐈𝒎  ⨂ 𝐉𝒏or equivalently. The goal of the 

researcher may additionally be to make attractive predictions in precise with in the design 

space. To do this, Box and Hunter (1957) described a variance function, which is also 

called the scaled prediction variance (SPV). SPV offers the accuracy of the estimated 

response at any point in the design space. 

𝑺𝑷𝑽 = 𝑵𝐱𝟎
′ (𝑿′𝐑−𝟏𝑿)−𝟏𝐱𝟎         (iv) 

The objective of this study is to find the robustness of our purposed class of design in the 

terms of losses in efficiency for Robust VKM CCD are computed by the following rules 

which used when we missed single design points in every design point. The relative loss 

in G-efficiency (l1) due to missing single observation for individually category of design 

points, diverse values of variance ratio (1, 5, & 10) and α, β are calculated by  

Relative Loss in G-efficiency   𝒍𝟑 =
𝑴𝒂𝒙𝒙𝟎𝝐𝑹𝑺𝑷𝑽

(𝑴𝒂𝒙𝒙𝟎𝝐𝑹𝑺𝑷𝑽)𝒓
− 𝟏  (v) 

4. Findings and Discussion 

Vining et al. (2005) proposed a class of second-order response surface designs under the 

split graph structure, called central composite VKM designs. The name "VKM" for this 

type of design is due to the authors Vining, Kowalski and Montgomery. An important 

property of these designs is that ordinary least squares parameter estimation is considered 

the same as generalized least squares for such models. Due to this property, these plans are 

also called equivalent estimate plans. These designs are very efficient in saving 

experimental resources and are easily used for whole-plot and pure-error subplot error 

variance estimation. The notation D (w; k) denotes a design with w whole-plot factors and 

k sub-plot factors. Split-plot response surface designs with 1<w<3 and 1<k<4 is most 

commonly used for applications. This paper also considers such designs with the same 

number of factors to study their robustness to missing values. VKM CCD is a split-plot 

version of the CCD. The total number of factors for these central composite planes is F = 

w + k. Α is the distance between the center of the subplot factor and the axis/star point, and 

β is the distance between the center of the WP factor and the axis/star point. It is important 

to note that the values of α and β are considered the same when calculating the loss and the 

survey. This study aims to find the loss of a missing value in the VKM CCD. WP factor ≤ 

3 and subplot factor ≤ 4. Consider different but identical values of α and β. Another factor 
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is the variance ratio (VR), which includes three values of 1, 5 and 10. The effect of missing 

values is calculated for the four types of design points and for different values of α, β and 

the ratio variance. In this research offered the overall expressions of information matrices, 

its inverse, determinant and hint changed for VKM CCD to similarly speak the robustness 

of this magnificence of designs and additionally assemble for two factor VKM CCD (1, 1). 

The Mathematical expressions of information matrix at the side of a few important features 

for three-factor VKM CCD (1, 2) and Four-factor (1, 3) are given in whole description and 

other designs are summary and discussion. 

4.1. Robust Three-factor VKM CCD (1, 2) 

The three-factor VKM CCD (1, 2) includes one whole-plot and two sub-plot factors. This 

design has total 24 design points, including eight factorial points, eight WP axial points, 

four sub plot axial and four center points. For orthogonal and rotatable design points values 

are (0.9555) and (1.4142) respectively. The losses due to missing each design point are 

calculated relative to A, D and G-efficiency for diverse range of α, β values and fixed 

variance ratio in which the three factor VKM CCD (1, 2) design is orthogonal and rotatable. 

So, this design is called robust three-factor VKM CCD (1, 2) against single missing 

observation. The results are mentions in tables below and the last column of these tables 

shows maximum loss for missing single value and figures of results are also constructed 

for maximum losses. 

R𝑖 =

(
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=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 −1 −1 −1   1   1   1 1 1 1
1 −1   1 −1 −1   1 −1 1 1 1
1 −1 −1   1  1 −1 −1 1 1 1
1 −1  1   1 −1 −1  1 1 1 1
1  1 −1 −1 −1 −1   1 1 1 1
1  1  1 −1   1 −1 −1 1 1 1
1  1 −1   1 −1   1 −1 1 1 1
1  1  1  1  1   1  1 1 1 1
1 −𝛽  0  0  0   0  0 β2 0 0

1 −𝛽  0  0  0  0  0 β2 0 0

1 −𝛽  0  0  0  0  0 β2 0 0

1 −𝛽  0  0  0  0  0 β2 0 0

1 𝛽  0  0  0  0  0 β2 0 0

1 𝛽  0  0  0  0  0 β2 0 0

1 𝛽  0  0  0  0  0 β2 0 0

1 𝛽  0  0  0  0  0 β2 0 0

1 0 −𝛼  0  0  0  0 0 𝛼2 0
1 0 𝛼  0  0  0  0 0 𝛼2 0
1 0  0 −𝛼  0  0  0 0 0 𝛼2

1 0  0 𝛼  0  0  0 0 0 𝛼2

1 0  0 0  0  0  0 0 0 0
1 0  0 0  0  0  0 0 0 0
1 0  0 0  0  0  0 0 0 0
1 0  0 0  0  0  0 0 0 0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Information Matrix for Robust VKM CCD (1, 2) is given below: 

(XˊRˉ1X)

=

[
 
 
 
 
 
 
 Π 0

8(1 + 𝛽2)(1 + 𝜂)

1 + 4𝜂

2(4 + 𝛼2)(1 + 𝜂)

1 + 4𝜂
0 Diag (di) 0 0

8(1 + 𝛽2)(1 + 𝜂)

1 + 4𝜂
0

8(1 + 𝛽4)(1 + 𝜂)

1 + 4𝜂

8(1 + 𝜂)

1 + 4𝜂

2(4 + 𝛼2)(1 + 𝜂)

1 + 4𝜂
0

8(1 + 𝜂)

1 + 4𝜂

2(1 + 𝜂)(4 + 𝛼4(1 + 2𝜂))

1 + 4𝜂 ]
 
 
 
 
 
 
 

 

Determinant of Information Matrix for Robust VKM CCD (1, 2) 

|XˊRˉ1X|= 
𝟐𝟎𝟗𝟕𝟏𝟓𝟐(𝟒+𝛂𝟐)𝟐(𝟏+𝛃𝟐)(𝟏𝟔𝛂𝟒𝛃𝟒−𝟖𝛂𝟔𝛃𝟐(−𝟏+𝛃𝟐)+𝛂𝟖(𝟑−𝟒𝛃𝟐+𝟑𝛃𝟒))(𝟏+𝛈)𝟏𝟎

(𝟏+𝟒𝛈)𝟒
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4.2 Robust Four-factor VKM CCD (1, 3) 

The four-factor VKM CCD (1, 3) includes one whole-plot and three sub-plot factors. This 

design has total 64 design points, including twenty-four factorial points, twenty-four WP 

axial points, eight sub plot axial and eight center points. For orthogonal and rotatable 

design points values are (0.94777) and (1.4142) respectively. The losses due to missing 

each design point are calculated relative to A, D and G-efficiency for diverse range of α, β 

values and fixed variance ratio in which the four-factor VKM CCD (1, 3) design is 

orthogonal and rotatable. So, this design is called robust four-factor VKM CCD (1, 3) 

against single missing observation. 

(XˊRˉ1X) =

[
 
 
 
 
 
 
 Π 0

16(1 + 𝛽2)(1 + 𝜂)

1 + 8𝜂

8(2 + 𝛼2)(1 + 𝜂)

1 + 8𝜂
0 Diag (di) 0 0

16(1 + 𝛽2)(1 + 𝜂)

1 + 8𝜂
0

16(1 + 𝛽4)(1 + 𝜂)

1 + 8𝜂

16(1 + 𝜂)

1 + 8𝜂

8(4 + 𝛼2)(1 + 𝜂)

1 + 8𝜂
0

16(1 + 𝜂)

1 + 8𝜂

8(2 + 𝛼4)(1 + 𝜂)

1 + 8𝜂 ]
 
 
 
 
 
 
 

 

|XˊRˉ1X|= 

2097152𝑎4(1 + 𝑏2)(1 + 𝑐)10(256𝑏4(1 + 4𝑐) + 5𝑎6(3 − 4𝑏2 + 3𝑏4)(1 + 4𝑐) +

𝑎4(48(1 + 4𝑐) − 24𝑏2(1 + 4𝑐) + 𝑏4(9 + 32𝑐)) − 4𝑎2(−32𝑏2(1 + 4𝑐) + 𝑏4(11 + 48𝑐) 

(1 + 4𝑐)5
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Table 1: Comparison between Three-factor & Four -factor VKM CDD 

Robust VKM CCD (1, 2) Robust VKM CCD (1, 3) 

Number of total runs (N=24) Number of total runs (N=64) 

Π = N 1
=

24(1 + η)

(1 + 2η)
 Π = N 1

=
64(1 + η)

(1 + 2η)
 

Factorial points (f= 8) Factorial points (f= 24) 

WP axial points (ƒw = 8) WP axial points (ƒw = 24) 

Whole-plot factors (wp = 1) Whole-plot factors (wp = 1) 

Sub-plot factor (sp = 2) Sub-plot factor (sp = 3) 

Sub plot axial (wi = 4) Sub plot axial (wi = 8) 

Center points rw = 4 Center points (rw = 8) 

Orthogonality = 0.9555 Orthogonality = 0.94777 

Rotatability = 1.4142 Rotatability = 1.4142 

Partitioning of Information Matrix for Robust VKM CCD (1, 2 & 1, 3) 

A = [
𝑨𝟏𝟏 𝑨𝟏𝟐

𝑨𝟐𝟏 𝑨𝟐𝟐
] , B = [

𝑩𝟏𝟏 𝑩𝟏𝟐

𝑩𝟐𝟏 𝑩𝟐𝟐
] , 

A11 = [
𝚷 𝟎
𝟎 𝑫𝒊𝒂𝒈(𝒅𝒊)

] B11 = [
𝚷 𝟎
𝟎 𝑫𝒊𝒂𝒈(𝒅𝒊)

], 

A12 = [
𝟖(𝟏+𝜷𝟐)(𝟏+𝜼)

𝟏+𝟒𝜼

𝟐(𝟒+𝜶𝟐)(𝟏+𝜼)

𝟏+𝟒𝜼

𝟎 𝟎
] B12 = [

𝟏𝟔(𝟏+𝜷𝟐)(𝟏+𝜼)

𝟏+𝟖𝜼

𝟖(𝟐+𝜶𝟐)(𝟏+𝜼)

𝟏+𝟖𝜼

𝟎 𝟎
], 

𝐀𝟐𝟏= [

𝟖(𝟏+𝜷𝟐)(𝟏+𝜼)

𝟏+𝟒𝜼
𝟎

𝟐(𝟒+𝜶𝟐)(𝟏+𝜼)

𝟏+𝟒𝜼
𝟎
] 𝐁𝟐𝟏= [

𝟏𝟔(𝟏+𝛃𝟐)(𝟏+𝛈)

𝟏+𝟖𝛈
𝟎

𝟖(𝟒+𝛂𝟐)(𝟏+𝛈)

𝟏+𝟖𝛈
𝟎
] 
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Table 1 shows the complete comparison between the three-factor robust VKM CCD (1, 2) 

and four-factor robust VKM CCD (1,3) by mathematically computations of both designs 

also compare the Partitioning of the information matrix for VKM CCD (1, 2 & 1, 3). 

4.3 Robust Comparison in G-efficiency between Three-factor (1,2) & Four-factors (1,3, 

2, 2 & 3,1) VKM CCD  

In this section compare the three-factor and four-factor designs based on relative loss in G-

efficiency (l3) due to missing single observation for individually category of design points, 

diverse values of variance ratio (1, 5, & 10) and α, β are given in table (2, 3 & 4) 

respectively and figure 1 shows the relative loss in G-efficiency has decreasing trend at 

different values of variance ratio and α, β. Similarly, in figure 2 shows also decreasing 

trend in overall maximum losses for three-factor VKM CCD. Result in table 2 present the 

robustness for robust VKM CCD (1, 2), when variance ratio (V.R) 1 and the design with 

α=β=2.5 shows minimax loss due to relative G-efficiency, i.e. (0.06657). Similarly, when 

V.R is 5 and 10 minimax losses due to relative G-efficiency, i.e. (0.01236 & 0.01236) are 

at α=β=2.5 respectively. Overall, minimax loss due to relative G-efficiency, i.e. (0.00634) 

at variance ratio 10 and α=β=2.5 The robust three-factor design VKM CCD (1, 2) is called 

relative to G-efficient. 
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Table 2: Loss in G-efficiency for Robust VKM CCD (1, 2) 

      *Minimax loss for fixed variance ratio  **Overall Minimax loss 

Variance 

Ratio 

Alpha/

βeta 

when missing single value in Max 

Loss FP WP SP CP 

1 0.5 0.10766 0.00197 0.00485 0.00004 0.10766 

0.7 0.14023 0.00301 0.01048 0.00016 0.14023 

0.9 0.17442 0.00388 0.01964 0.00045 0.17442 

1.1 0.20496 0.00468 0.03454 0.00094 0.20496 

1.3 0.22825 0.00561 0.05892 0.00133 0.22825 

1.5 0.23087 0.00017 0.08236 0.06143 0.23087 

1.7 0.03984 0.00000 0.0001 0.06657 0.06657* 

1.9 0.11563 0.00049 0.08414 0.00074 0.11563 

2.1 0.08778 0.00022 0.0853 0.00172 0.08778 

2.3 0.06753 0.00009 0.08515 0.00194 0.08515 

2.5 0.05372 0.00004 0.08282 0.00174 0.08282 

5 0.5 0.03599 0.00065 0.00162 0.00001 0.03599 

0.7 0.04822 0.00101 0.00357 0.00005 0.04822 

0.9 0.06164 0.00132 0.00683 0.00015 0.06164 

1.1 0.07466 0.00162 0.01237 0.00033 0.07466 

1.3 0.00658 0.01236 0.00073 0.0046 0.01236* 

1.5 0.00072 0.00004 0.00154 0.01468 0.01468 

1.7 0.00002 0.00000 0.00003 0.01585 0.01585 

1.9 0.00046 0.00001 0.00053 0.01535 0.01535 

2.1 0.00347 0.01414 0.00021 0.00003 0.01414 

2.3 0.02384 0.00003 0.02816 0.00063 0.02816 

2.5 0.01879 0.00001 0.02705 0.00056 0.02705 

10 0.5 0.01961 0.00036 0.00088 0.00001 0.01961 

0.7 0.02641 0.00055 0.00195 0.00003 0.02641 

0.9 0.03395 0.00072 0.00375 0.00008 0.03395 

1.1 0.03304 0.00604 0.0003 0.00012 0.03304 

1.3 0.00341 0.00634 0.00038 0.00008 0.00634** 

1.5 0.00037 0.00002 0.00079 0.00752 0.00752 

1.7 0.00001 0.00000 0.00001 0.00812 0.00812 

1.9 0.00024 0.00001 0.00027 0.00786 0.00786 

2.1 0.0018 0.00725 0.00011 0.00002 0.00725 

2.3 0.0014 0.00739 0.00005 0.00002 0.00739 

2.5 0.0103 0.00001 0.01467 0.00031 0.01467 
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Figure 1. Loss in G-efficiency for Robust VKM CCD (1, 2) 

 

Figure 2. Maximum Loss in G-efficiency for Robust VKM CCD (1, 2) 

Robustness of robust VKM CCD (1, 3) shows in table 3, when variance ratio (V.R) 1 and 

the design with α=β=1.9 shows minimax loss due to relative G-efficiency, i.e. (0.03022). 

Similarly, when V.R is 5 and 10 minimax losses due to relative G-efficiency, i.e. (0.00343 
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& 0.00174) are at α=β=1.9 respectively. Overall, minimax loss due to relative G-

efficiency, i.e. (0.00174) at variance ratio 10 and α=β=1.9 The robust four-factor design 

VKM CCD (1, 3) is called relative to G-efficient. 

Table 3: Loss in G-efficiency for VKM CCD (1, 3) 

     *Minimax loss for VKM CCD fixed variance ratio  **Overall Minimax loss 

Variance 

Ratio 

Alpha/

βeta 

when missing single value in Max Loss 

FP WP SP CP 

1 0.5 0.09371 0.00047 0.00061 0.00001 0.09371 

0.7 0.11628 0.00072 0.0011 0.00004 0.11628 

0.9 0.14197 0.0009 0.00166 0.00011 0.14197 

1.1 0.16867 0.00105 0.00228 0.00027 0.16867 

1.3 0.19559 0.00122 0.00308 0.00055 0.19559 

1.5 0.19516 0.00005 0.03639 0.00062 0.19516 

1.7 0.04941 0.00005 0.03969 0.00026 0.04941 

1.9 0.00015 0.00001 0.03022 0.01563 0.03022* 

2.1 0.00743 0.00002 0.04568 0.00115 0.04568 

2.3 0.00605 0.00001 0.04818 0.00007 0.04818 

2.5 0.00488 0.00000 0.0503 0.0001 0.0503 

5 0.5 0.02836 0.00014 0.00019 0.00000 0.02836 

0.7 0.0272 0.00000 0.00489 0.00018 0.0272 

0.9 0.00108 0.00000 0.00575 0.00019 0.00575 

1.1 0.00132 0.00001 0.00665 0.0002 0.00665 

1.3 0.00158 0.00001 0.00755 0.00019 0.00755 

1.5 0.00186 0.00001 0.00841 0.00014 0.00841 

1.7 0.00207 0.00001 0.00922 0.00006 0.00922 

1.9 0.00003 0.00000 0.00001 0.00343 0.00343* 

2.1 0.00003 0.00000 0.00000 0.00344 0.00344 

2.3 0.00144 0.00000 0.01127 0.00002 0.01127 

2.5 0.00117 0.00000 0.01179 0.00002 0.01179 

10 0.5 0.01515 0.00008 0.0001 0.00000 0.01515 

0.7 0.00041 0.00000 0.00248 0.00009 0.00248 

0.9 0.00055 0.00000 0.00292 0.0001 0.00292 

1.1 0.00067 0.00000 0.00339 0.0001 0.00339 

1.3 0.0008 0.00000 0.00385 0.0001 0.00385 

1.5 0.00095 0.00001 0.00429 0.00007 0.00429 

1.7 0.00106 0.00001 0.00471 0.00003 0.00471 

1.9 0.00002 0.00000 0.00000 0.00174 0.00174** 

2.1 0.00002 0.00000 0.00000 0.00174 0.00174 

2.3 0.00074 0.00000 0.00576 0.00001 0.00576 

2.5 0.0006 0.00000 0.00602 0.00001 0.00602 
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The four-factor VKM CCD (2, 2) includes two whole-plot and two sub-plot factors. This 

design has total 40 design points, including sixteen factorial points, sixteen WP axial 

points, four sub plot axial and four center points. For orthogonal and rotatable design points 

values are (0.9568) and (1.4142) respectively. The losses due to missing each design point 

are calculated relative G-efficiency for diverse range of α, β values and fixed variance ratio 

in which the four-factor VKM CCD (2, 2) design is orthogonal and rotatable. So, this 

design is called robust four-factor VKM CCD (2, 2) against single missing observation. 

The four-factor VKM CCD (3, 1) includes three whole-plot and one sub-plot factors. This 

design has total 32 design points, including 16 factorial points, 12 WP axial points, two 

sub plot axial and two center points. For orthogonal and rotatable design points values are 

(0.9568) and (1.4142) respectively. So, this design is called robust four-factor VKM CCD 

(3, 1) against single missing observation.  

For this robust VKM CCD (2, 2), when variance ratio (V.R) 1 and the design with α=β=1.9 

shows minimax loss due to relative G-efficiency, i.e.  (0.00009). Similarly, when V.R is 5 

and 10 minimax losses due to relative G-efficiency, i.e.  (0.00029 & 0.00014) are at 

α=β=0.5 respectively. Overall, minimax loss due to relative G-efficiency, i.e.  (0.00009) 

at variance ratio 10 and α=β=1.9 The robust four-factor design VKM CCD (2, 2) is called 

relative to G-efficient. For this robust VKM CCD (3, 1), when variance ratio (V.R) 1 and 

the design with α=β=2.3 shows minimax loss due to relative G-efficiency, i.e.  (0.11453). 

Similarly, when V.R is 5 and 10 minimax losses due to relative G-efficiency, i.e.  (0.03635 

& 0.01959) are at α=β=2.3 respectively. Overall, minimax loss due to relative G-

efficiency, i.e.  (0.01959) at variance ratio 10 and α=β=2.3. The robust four-factor design 

VKM CCD (3, 1) is called relative to G-efficient. 

Table 4: Summary for loss in G-efficiency for Robust VKM CCD (2, 2 & 3, 1) 

        *Minimax loss for fixed variance ratio  **Overall Minimax loss 

4.4 Loss in G-efficiency for Robust five-factor VKM CCD (1, 4) and Robust Six-Factor (3, 

3) 

The five-factor VKM CCD (1, 4) includes one whole-plot and four sub-plot factors. This 

design has total 48 design points, including sixteen factorial points, sixteen WP axial 

VR α/β When missing single value in Max. Loss 

FP WP  SP CP 

  G-efficiency for Four-factor VKM CCD (2, 2). 

1 1.9 0.00009 0.00000 0.00008 0.00000 0.00009** 

5 0.5 0.00000 0.00029 0.00009 0.00029 0.00029* 

10 0.5 0.00000 0.00014 0.00006 0.00014 0.00014* 

G-efficiency for Four-factor VKM CCD (3, 1) 

1 2.3 0.03283 0.00131 0.11453 0.00879 0.11453* 

5 2.3 0.01153 0.00042 0.03635 0.00279 0.03635* 

10 2.3 0.00634 0.00023 0.01959 0.0015 0.01959** 
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points, eight sub plot axial and eight center points. For orthogonal and rotatable design 

points values are (1.04834) and (1.68179) respectively. The losses due to missing each 

design point are calculated relative to G-efficiency for diverse range of α, β values and 

fixed variance ratio in which the five-factor VKM CCD (1, 4) design is orthogonal and 

rotatable. So, this design is called robust five-factor VKM CCD (1, 4) against single 

missing observation. The results are mentions in table 4 which is consisting of over-all 

summary for loss in G-efficiency for Robust augmented (1, 4). For this robust VKM CCD 

(1, 4), when variance ratio (V.R) 1 and the design with α=β=0.5 shows minimax loss due 

to relative G-efficiency, i.e. (0.00111). Similarly, when V.R is 5 and 10 minimax losses 

due to relative G-efficiency, i.e. (0.00038 & 0.00021) are at α=β=0.5. Overall, minimax 

loss due to relative G-efficiency, i.e. (0.00111) at variance ratio 1 and α=β=0.5. The robust 

five-factor design VKM CCD (1, 4) is called relative to G-efficient. 

The six-factor VKM CCD (3, 3) includes three whole-plot and three sub-plot factors. This 

design has total 72 design points, including thirty-two factorial points, thirty-two WP axial 

points, four sub plot axial and four center points. For orthogonal and rotatable design points 

values are (1.09757) and (2.37841) respectively. The losses due to missing each design 

point are calculated relative to G-efficiency for diverse range of α, β values and fixed 

variance ratio in which the six-factor VKM CCD (3, 3) design is orthogonal and rotatable. 

So, this design is called robust six-factor VKM CCD (3, 3) against single missing 

observation. The results are mentions in tables 5. For this robust VKM CCD (3, 3), when 

variance ratio (V.R) 1 and the design with α=β=1.1 shows minimax loss due to relative G-

efficiency, i.e. (0.00157). Similarly, when V.R is 5 and 10 minimax losses due to relative 

G-efficiency, i.e. (0.01677& 0.0086) are at α=β=0.5 respectively. Overall, minimax loss 

due to relative G-efficiency, i.e. (0.0086) at variance ratio 10 and α=β=0.5. The robust six-

factor design VKM CCD (3, 3) is called relative to G-efficient. 
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Table 5: G-efficiency for Robust Five-factor VKM CCD (1, 4). 

    *Minimax loss for fixed variance ratio  **Overall Minimax loss 

 

Variance 

Ratio 

Alpha/β

eta 

when missing single value in Max. Loss 

FP WP SP CP 

1 0.5 0.00009 0.00043 0.00111 0.00000 0.00111* 

0.7 0.00027 0.00067 0.00233 0.00001 0.00233 

0.9 0.0006 0.00085 0.00415 0.00002 0.00415 

1.1 0.00105 0.00097 0.00669 0.00004 0.00669 

1.3 0.00159 0.00103 0.01014 0.00007 0.01014 

1.5 0.00215 0.00105 0.01479 0.00011 0.01479 

1.7 0.00268 0.00105 0.02094 0.00013 0.02094 

1.9 0.00312 0.00103 0.02871 0.0001 0.02871 

2.1 0.00347 0.00101 0.03751 0.00003 0.03751 

2.3 0.00384 0.00096 0.04588 0.0095 0.04588 

2.5 0.01233 0.00001 0.17665 0.00041 0.17665 

5 0.5 0.00003 0.00015 0.00038 0.00000 0.00038* 

0.7 0.0001 0.00024 0.00083 0.00000 0.00083 

0.9 0.00022 0.00031 0.00152 0.00001 0.00152 

1.1 0.0004 0.00036 0.00252 0.00002 0.00252 

1.3 0.00016 0.0027 0.0015 0.00001 0.0027 

1.5 0.00014 0.00282 0.00003 0.00001 0.00282 

1.7 0.00012 0.00292 0.00002 0.00000 0.00292 

1.9 0.00003 0.00000 0.00052 0.00319 0.00319 

2.1 0.00001 0.00000 0.00009 0.00343 0.00343 

2.3 0.00000 0.00000 0.00002 0.00347 0.00347 

2.5 0.00004 0.00000 0.00026 0.00331 0.00331 

10 0.5 0.00002 0.00008 0.00021 0.00000 0.00021** 

0.7 0.00005 0.00013 0.00046 0.00000 0.00046 

0.9 0.00012 0.00017 0.00085 0.00000 0.00085 

1.1 0.00022 0.0002 0.00141 0.00001 0.00141 

1.3 0.00008 0.00137 0.00001 0.00000 0.00137 

1.5 0.00007 0.00143 0.00001 0.00000 0.00143 

1.7 0.00006 0.00148 0.00001 0.00000 0.00148 

1.9 0.00002 0.00000 0.00026 0.00161 0.00161 

2.1 0.00000 0.00000 0.00004 0.00174 0.00174 

2.3 0.00000 0.00000 0.00001 0.00176 0.00176 

2.5 0.00002 0.00000 0.00013 0.00168 0.00168 
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Table 6. G-efficiency for Robust Six-factor VKM CCD (3, 3) 

     *Minimax loss for fixed variance ratio  **Overall Minimax loss 

 

 

Variance 

Ratio 

Alpha/

βeta 

when missing single value in Max. Loss 

FP WP SP CP 

1 0.5 0.00858 0.00016 0.00016 0.00013 0.00858 

0.7 0.00626 0.00029 0.00029 0.00026 0.00626 

0.9 0.00314 0.00043 0.00043 0.00041 0.00314 

1.1 0.00157 0.00057 0.00057 0.00059 0.00157* 

1.3 0.00152 0.00069 0.00069 0.01779 0.01779 

1.5 0.00146 0.00078 0.00078 0.05405 0.05405 

1.7 0.00141 0.00086 0.00086 0.09184 0.09184 

1.9 0.00082 0.00000 0.00000 0.11118 0.11118 

2.1 0.00088 0.00000 0.00000 0.11933 0.11933 

2.3 0.00093 0.00000 0.00000 0.12769 0.12769 

2.5 0.00096 0.00000 0.00000 0.13613 0.13613 

5 0.5 0.00003 0.00000 0.00000 0.01677 0.01677* 

0.7 0.00005 0.00000 0.00000 0.01763 0.01763 

0.9 0.00008 0.00000 0.00000 0.01874 0.01874 

1.1 0.00011 0.00000 0.00000 0.02011 0.02011 

1.3 0.00014 0.00000 0.00000 0.0217 0.0217 

1.5 0.00016 0.00000 0.00000 0.02348 0.02348 

1.7 0.00019 0.00000 0.00000 0.02544 0.02544 

1.9 0.00021 0.00000 0.00000 0.02753 0.02753 

2.1 0.00023 0.00000 0.00000 0.02972 0.02972 

2.3 0.00024 0.00000 0.00000 0.03198 0.03198 

2.5 0.00025 0.00000 0.00000 0.03428 0.03428 

10 0.5 0.00001 0.00000 0.00000 0.0086 0.0086** 

0.7 0.00003 0.00000 0.00000 0.00904 0.00904 

0.9 0.00004 0.00000 0.00000 0.00962 0.00962 

1.1 0.00005 0.00000 0.00000 0.01033 0.01033 

1.3 0.00007 0.00000 0.00000 0.01115 0.01115 

1.5 0.00009 0.00000 0.00000 0.01208 0.01208 

1.7 0.0001 0.00000 0.00000 0.0131 0.0131 

1.9 0.00011 0.00000 0.00000 0.01419 0.01419 

2.1 0.00012 0.00000 0.00000 0.01533 0.01533 

2.3 0.00013 0.00000 0.00000 0.01651 0.01651 

2.5 0.00013 0.00000 0.00000 0.01771 0.01771 
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4.5 Graphical Measures with Prediction Capabilities  

In three factor VKM CCD (1, 2) the variance dispersion graph (2D-VGD & 3D-VGD) 

constructed for different values of α/β = [0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9,2.1,2.3,2.5] and 

fixed variance ratio (1,5,10), of designs points against the maximum scaled prediction 

variance (SPV). The two-dimensional (2D-VDG) is given in figure 5 whereas three- 

dimensional Variance Dispersions Graph (3D-VDG) for variance ratio (1, 5 & 10) in 

figures (3, 4, 5 & 6) respectively. In this section the three-factor VKM CCD (1, 2) shown 

by graphically representation on the basis of the above 2D- and 3D-VDGs figures, may be 

explained. When the values of SPV at different values of variance ratio and α, β, has a 

curvature in 2D graphs. When Variance ratio (VR) = 1, the design with α=β=0.5 shows 

the maximum SPV, i.e., 0.8668 whereas at α=β=1.5, SPV has a minimum value 0.5787. 

Similarly, when VR is 5 & 10, the minimum values (0.6837, 0.6933) of SPV are at α=β=1.3 

and 1.1 respectively, and have maximum values (0.8880, 0.9305) are at α=β=0.5& 1.7 

respectively. Overall, the maximum SPV is minimum at VR=1, α=β=1.5 and maximum at 

VR=10, α=β=1.7. In 3D- VDG at different values of variance ratio are given and colure 

bar shows its trend on variant values of alpha and beta. 

 
Figure 3: 2D-VDG for VKM CCD (1, 2) 
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Figure 4. 3D-VDG At Variance Ratio 1 for VKM CCD (1, 2) 

 
Figure 5. 3D-VDG at Variance Ratio 5 for VKM CCD (1, 2) 
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Figure 6: 3D-VDG At Variance Ratio 10 for VKM CCD (1, 2) 

In three-factor VKM CCD (1, 2) shown by graphically representation on the basis of 

(FDS), Contour plots and 3D-suface are constructed for different values of α/β and fixed 

variance ratio (1,5,10), of designs points which are shown in figures (7, 8 & 9) respectively. 

In Fraction Design Space plot (FDS) it shows the area of design space plot having mean 

standard error equal to specified value. The standard error is 0.57 on the 29% in figure (9). 

The contour Plot for VKM CCD (1, 1) is shown in figures (10) have seven contours (0.4, 

0.4, 0.4, 0.4, 0.5, 0.6 and 0.7). The 3D surface is shown in figures (11) and red dots 

represents the coordinates of design points, which range from 0.5 to 2.5 in coded factors 

units. 
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Figure 7: FDS Graph for VKM CCD (1, 2) 

 

Figure 8: Contour Plots for VKM CCD (1, 2) 
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Figure 9: 3D- Surface for VKM CCD (1, 2) 

4.6 Applications of Prediction Capability in Commerce and Industry 

Prediction of future results is an important objective in regression analysis and analysis of 

variance. The studies based on experimental data in commerce and industry have many 

applications regarding prediction capability of the used designs as well as the models. Few 

of them are mentioned here: 

➢ E-commerce brands and retailers wish to predict loyal customers when different 

marketing campaigns are applied to study the customer’s perception 

➢ Predicting stock market prices and other financial indicators is an important 

practice.  

➢ Forecasting markets for strategic planning, providing a basis for financial 

institutions and governments to direct investments, and companies developing 

contingency plans. 

5. Conclusion 

The G-efficiency criterion and the variance dispersion graph are useful measures for 

evaluating competing designs. The VDG is a useful device for visualizing different values 

of the scaled prediction variance for extraordinary designs and its region in the graph space. 

Fraction of Design Space (FDS) methods are complementary to current VDG techniques. 

FDS focuses on how it predicts any section of the design space. It offers the phase of the 

plan house which is much less than or equal to a predefined SPV value. The FDS plot 

represents the graph cumulative fraction for every SPV in the design space. It lets in 
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assessment of usual minimal and maximal values of SPVs of one-of-a-kind designs. One 

can see the approximate G-efficiency for that design with the specific model directly from 

the FDS plot. For G-efficiency against single missing observation we conclude that when 

the variance ratio is different [1, 5, 10] and the designs points α/β Based on the data in table 

(9), the following are probable outcomes are given below on different designs factors. 

Compute the relative loss of G-efficiency to find the robustness of VKM CCD in which 

study the all-sub classes such as Two-Factor (1, 1), Three-factors [(1, 2), (2, 1)], Four-

Factors [(1,3), (2, 2), (3,1)], Five-Factors [(1,4), (2,3), (3, 2)] and Six-Factor [(2,4) and (3, 

3)] robust VKM CCD. Over-all summary of Robust VKM CCDs against loss due to 

missing observation to observed the efficient designs on the diverse values of alpha/ beta 

and fixed variance ratio on each design points. 

Table 7: Summary of Robust VKM CCDs against Missing Single Observation 
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w K Parameters of 

Robust design 

Minimax Loss Comments 

V. Ratio α / β 

1 1 10 2.5 0.01681 (Factorial point) Relative to G-efficient 

1 2 10 1.3 0.00634 (WP axial point) Relative to G-efficient 

1 3 10 1.9 0.00174 (Center point) Relative to G-efficient 

1 4 10 1.9 0.00163 (Center point) Relative to G-efficient 

2 1 10 2.5 0.01472 (Subplot axial 

point) 

Relative to G-efficient 

2 2 1 0.5 0.00009 (Factorial point) Relative to G-efficient 

2 3 10 0.5 0.00855 (Factorial point) Relative to G-efficient 

2 4 10 2.1 0.00148 (WP axial point) Relative to G-efficient 

3 1 10 2.3 0.01959 (Subplot axial 

point) 

Relative to G-efficient 

3 2 10 2.5 0.00706 (Center point) Relative to G-efficient 

3 3 10 0.5 0.0086 (Center point) Relative to G-efficient 
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